Quantum Mechanics Notes

Schrodinger equation
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Uncertainty principle [image: ]
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TISE
Separation of variables
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Infinite square well     [image: ]    [image: ]
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Fourier’s trick
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Stationary states of the infinite square well [image: ]
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Free particle
V(x) = 0
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[image: ] This wave function is not normalizable.
The separable solutions do not represent physically realizable states. A free particle cannot exist in a stationary state. There is no such a thing as a free particle with a definite energy.
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If V(x) rises higher than the particle’s total energy € on either side, then the particle is stuck in the potential well.  It rocks back and forth between the turning points, but it cannot escape. This is a bound state.

If E exceeds V(x) on one or both sides, then the particle comes in from “infinity”, flows down or speeds up under the influence of the potential and returns to infinity. We call this a scattering state.
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If E<0, in the region x<0, V(x) = 0
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If E < 0 , in the region x>0, V(x)=0
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The idea is to integrate the Schrodinger equation from - to , and then to take the limit as 
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If E>0, x<0
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R + T = 1
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Finite square well

[image: ]
In x –a, V(x) = 0
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Problem 2.24 Two expressions [ D;(x) and D;(x)] involving delta functions are
said to be equal if

+00 +00

S@)Di(x)dx = f@)Dy(x) dx,

for any (ordinary) function f(x).

(a) Show that

S(ex) = l5(x), [2.124]
le|

where c is a real constant.
(b) Let 6(x) be the step function:

1, ifx>0,

o0 =10 ifx <0.

2.125])

[In the rare case where it actually matters, we define 6(0) to be 1/2.] Show that
d6dx = 5(x).
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(a) Letyza,sodz:%dy. {

IRCES {

In cither case, [ : F(2)3(ca)dz = ﬁ 7(0) = [ : j(x)li—lls(z).zn So a(cz) = ﬁ&[z} v

I fW/©dw)dy = 2£(0) (e > 0); or

I T/ e)dw)dy =~ [, f(w/e)5(y)dy = ~1£(0) (c < 0).

(b)

/: f(I)%dr = lﬁr /: %Bdl‘ (integration by parts)

=1t = [ L= 100 )+ 10 = 10 = [ f@ors.

Sodf/dz = 5(z). v [Makes sense: The § function is constant, (so derivative is zero) except at z = 0, where
the derivative is infinite.]
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*Problem 2.25 What is the Fourier transform of  (x)? Using Plancherel’s theorem,
show that

| e
() = — f & dk. [2.126]
21 Jooo

Comment: This formula gives any respectable mathematician apoplexy. Although

the integral is clearly infinite when x = 0, it doesn’t converge (to zero or anything
else) when x # 0, since the integrand oscillates forever. There are ways to patch it up

(for instance, you can integrate from — L to +L, and interpret the integral in Equation
2.126 to mean the average value of the finite integral, as L — oo). The source of the
problem is that the delta function doesn’t meet the requirement (square integrability)
for Plancherel’s theorem (see footnote 22). In spite of this, Equation 2.126 can be
extremely useful, if handled with care.




image97.png
1 - —ikr g,
Put (z) = () into Ba. 2.102: F(b) = —= [ _S@ede =

L= L gy o L7 gy D
.'_[(r):&(r):ﬁlwﬁckdk—le[wc QE




image98.png
(E is negative, by assumption, so & is real and positive.) The general solution to
Equation 2.98 is
Y(x) = e + Ber, 12.100]

but the first term blows up as x — —00, S0 we must choose 4 = 0:

Y(x) = Be”,  (x <0). [2.101]
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In the region x > 0, ¥'(x) is again zero, and the general solution is of the form
Fexp(—kx) -+ G exp(icx):; this time it’s the second term that blows up (as.x — +00),

so
Y@ =Fe*, (x>0 12102)
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2. dyjdx is continuous except at points

{ 1.y is always continuous, and
where the potential is infinite,

In this case the first boundary condition tells us that F

B.so

¥

Be,  (x =0),
Be™, (x=0).
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o[t diy e Y e
- 2 Vx)dx
5| G / ¥ )y o) dx b/; Ydx.  [2105]

The first integral is nothing but d/dx, evaluated at the two end points; the last
integral is zero, in the limit € — 0, since it's the area of a sliver with vanishing width
and finite height. Thus

4y _
NEIE

Ordinarily, the limit on the right is again zero, and hence dy/dx is continuous,
But when V' (x) is infinite at the boundary, that argument fails. In particular, if
V(x) = ~ab(x), Equation 2.95 yields

dyy _ 2o -
A(M)f VO 12107

4

V(@)¥(x) dx 12.106]

For the case at hand (Equation 2.104),

—Bxe™*, for (x > 0), s0dy/dx
+Bre*, for (x < 0), sody/dx|_ =+BKk.

and hence A(d/dx)

2Bx. And y (0

ma
' 2.108
7 [2.108]

B. So Equation 2.107 says

and the allowed energy (Equation 2.99) is

W ma?
= 12109)
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Finally, we normalize y/:

f:w/m\’nx zw\‘/le’"‘*d

50 (choosing, for convenience, the positive real root):

N
o

12.110]

Evidently the delta-function well, regardless of its “strength” o, has exactly one bound
state:

VM e,

n 2111

Y =





image5.png




image104.png
where

Z;'E 2.112)
s real and positive. The general solution is
Y(x) = e + B, [2.113]

and this time we cannot rule out either term, since neither of them blows up. Similarly,
for x> 0,

Y(x) = Fe'™ + Ge™*r. [2.114]
The continuity of ¢ (x) at x = 0 requires that
F+G=A+B. [2.115)

The derivatives are

dy/d
dy/dx

ik(Fe** — Ge ™), for (v > 0), sody/dx|,
ik (A — Be™*), for (x < 0), sody/dx|

k(F = G),
k(4 - B),

and hence A(dy/dx) = ik(F — G — A+ B). Meanwhile, y(0) = (4 + B), so the
second boundary condition (Equation 2.107) says

-G-8y =244 B, 121161

or, more compactly,

F — G = 4(1+2if) — B(1 - 2i), whemfs‘z’%. 2.117)
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Figure 2,10 Scattering from a
delta-function el
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G =0 (for scatiering from the lefo). [2.118]

A is then the amplitude of the incident wave, B is the amplitude of the reflected
wave, and F is the amplitude of the transmitted wave. Solving Equations 2.115 and
2.117 for B and F, we find

B,
1—ip
(If you want to study scattering from the right, set A = 0; then G is the incident
amplitude, F is the reflected amplitude, and B is the transmitted amplitude.)

Now, the probability of finding the particle at a specified location is given by
WI2, 50 the relative® probability that an incident particle will be reflected back is

12119

[2.120]

Ris called the reflection coefficient. (If you have a beam of particles, it tells you the

fraction of the incoming number that will bounce back.) Meanwhile, the probability

of transmission is given by the transmission coefficient
[l 1

TR [2.121]
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Figure 2.1,
(Equation

The finite square well
127),




image109.png
is real and positive. The general solution is yr(x) = A exp(—xx) + B exp(kx), but
the first term blows up (as x — —oc), so the physically admissable solution (as
before—see Equation 2.101) is

Y) = Be™, for (x < —a). [2.129]
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In the region —a < x < a, V(x) = —Vo, and the Schrodinger equation reads

»dy &Y _
ez V¥ =BV o ==y,
where
12 ZERT (2130

Although F is negative, for a bound state, it must be greater than —F, by the old
theorem E > Vi (Problem 2.2); so  is also real and positive. The general solution
s

¥(x) = Csin(lx) + Dcos(lx), for (—a < x <a), 21317

where C and D are arbitrary constants. Finally, in the region x > a the potential is
again zero; the general solution is ¥ (x) = F exp(—kx) + G exp(xx), but the second
term blows up (as x — 00), 50 we are left with

Vi) = Fe™, for (x> a) 21321

The next step is to impose boundary conditions:  and dy/dx continuous at
—a and +a. But we can save a little time by noting that this potential is an even
function, so we can assume with no loss of generality that the solutions are either
even or odd (Problem 2.1c). The advantage of this is that we need only impose the
boundary conditions on one side (say, at -Ha); the other side is then automatic, since
¥(=x) = £y (x). Ill work out the even solutions; you get to do the odd ones in
Problem 2.28. The cosine is even (and the sine is 0dd), so I'm looking for solutions
£ the form
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Fe ™, for(x > a),
Deos(lx), for (0 < x < a),
Y(=x.  for(x <0)

v

The continuity of Y (x), at x = a, says
Fe™* = Deos(la),
and the continuity of d/dx says

— kFe™® = —IDsin(la).




image112.png
Dividing Equation 2.135 by Equation 2.134, we find that
& =lan(la) [2.136)

Equation 2.136 is a formula for the allowed energies, since & and / are both
functions of E. To solve for £, it pays to adopt some nicer notation. Let

2mVs, [2.137)

According to Equations 2.128 and 2.130, (x + %) = 2mVy /h%, so ka =

and Equation 2.136 reads
tanz = v/(20/2) [2.138]

‘This is a transcendental equation for z (and hence for E) as a function of 2 (which is
a measure of the “size” of the well). It can be solved numerically, using a calculator
or a computer, or graphically, by plotting tan z and /(z0/2)> — 1 on the same grid,
and looking for points of intersection (see Figure 2.13). Two limiting cases are of
special interest:
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‘Wide, deep well. 1I z is very large, the intersections occur just slightly
/2, with n 0dd; it follows that

o

1:,,+v,,=2m(2u)_ [2.139]
Here (E + Vo) is the energy above the bottom of the well, and on the right we have
precisely the nfinite square well energies, fora well of width 2a (see Equation 2.23)—
or rather, half of them, since n is odd. (The other ones, of course, come from the odd
wave functions, as you'llfind in Problem 2.28.) So the finite square well goes overto
the infinite square well, as Vo — oo; however, for any fnite Vs there are only finitely
‘many bound states.
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Problem 1.9 Let P,,(t) be the probability of finding the particle in the range
(a <z < b),attime t.

(a) Show that
dP,,

dt

= J(a,t) - J(b.t)

where

ih ow* ov
5, t) = — (0 - .
T@1 2m ( oz 89:)
What are the units of J(z, t)? [J is called the probability current, because
it tells you the rate at which probability is “flowing” past the point x. If Py, (t)}

is increasing, then more probability is flowing into the region at one end than
flows out at the other.]
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2. Shallow, narrow well. As 7o decreases, there are lewer and fewer bound
states, until finally (for zo < 7/2, where the lowest odd state disappears) only one
remains. It is interesting to note, however, that there is always one bound state, no
matter how “weak” the well becomes.

You're welcome to normalize  (Equation 2.133), if you're interested (see
Problem 2.29), but I'm going to move on now to the scattering states (£ > 0). To the
left, where V (x) = 0, we have

Y(x) = Ae 4 Be ™ for (x < —a). (2.140]
where (as usual)

[2.141]

Inside the well, where V (x) = —Va,

¥(x) = Csin(lx) + Deos(lx),  for (~a <x <a), 121421
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where, as before,

1= f*v“). [2.143]
“To the right, assuming there s no incoming wave in this region, we have
Yx) = Fe* [2.144]

As the incident amplitude, B is the reflected amplitude, and F is the transmitted
amplitude.”
There are four boundary conditions: Continuity of ¥ (x) at —a says

Ae™™ + B = —Csin(la) + Deos(la), [2.145)
continuity of d/dx at —a gives

ik{Aehe — Beita

[Ccosdla) + Dsindla)], [2.146]

continuity of  (x) at +a yields
Csin(la) + Dcos(la) = Fe'™*, 12.147]

and continuity of dy//dx at ++a requires
I[C cos(la) - Dsindla)] = ikFe'™ [2.148]

‘We can use two of these to eliminate C and D, and solve the remaining two for B
and F (see Problem 2.31):

[2.149]
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2ika 4
cos(2la) — i (2 + 1)

a0

[2.150]

The transmission coefficient (7 = |F|?/|4|%), expressed in terms of the original
variables, is given by

v P —
- —0  gn?(ZE
7 =k g (h ‘/’Zm(E{»Vn)). 12151)

Notice that 7' = 1 (the well becomes “transparent”) whenever the argument of the
sine s zero, which is to say, for

%‘/Zm(E,, + Vo) =nm, [2152]

where n is any integer. The energies for perfect transmission, then, are given by

i

Ei+Vo 12.153)

= Im

which happen to be precisely the allowed energies for the infinite square well. 7 is
plotied in Figure 2.14 as a function of energy.
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Puy(t) = [} [¥(x,t)?dz, so et = [72|0|%dr. But (Eq. 1.25):

B o [ih (00 ov \] @
o~ o |z \Var e )| T al e

dPnb
/ 2 Ja,tjde = - 17, 0] = T t) - J6,0.  QED
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+xProblem 1.10 Suppose you wanted to describe an unstable particle that sponta-
neously disintegrates with a “lifetime” 7. In that case the total probability of finding
the particle somewhere should ot be constant, but should decrease at (say) an expo-
nential rate:

+oo
P(t)E/ W (x, ) dx =e™'/".

0

A crude way of achieving this resultis as follows. In Equation I.24 we tacitly assumed
that ¥ (the potential energy) is real. That is certainly reasonable, but it leads to the
conservation of probability enshrined in Equation 1.27. What if we assignto ¥ an
imaginary part:

V =Vy—il,

where ¥ is the true potential energy and T" is a positive real constant?

(a) Show that (in place of Equation 1.27) we now get

dp _ o
dt — n

(b) Solve for P(1). and find the lifetime of the particle in terms of .
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(a) Eq. 1.24 now reads

¥ _ _ ih 9707

=~ % + V¥, and Eq. 1.25 picks up an extra term:

O PRV VY = B0V T Ve T — - 2D 2
at\vlf|7---+h\\ll|(v V)—---+h\\ll|(Vo+zF Vo+il)=--- h|\Il\,

and Eq. 1.27 becomes

(b)

R e

InP= —Zrt + constant

'p.  QED

h

P(t) = P(0)e=2/",
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*Problem 1.12 Calculate d{p)/dt. Answer:

dp) _ 7

dt dx

(This is known as Ehrenfest’s theorem; it tells us that expectation values obey
Newton’s second law.)

=Y, [138]
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From Eq. 1.33, 5t = —ih [ 5; (V™57 ) dz. But, noting that §55; = 557 and using Egs. 1.23-1.24:

o (. .0\ _ovov o (0¥ WPV i 10V 9 [Py i
E(‘I' az>’ ot oz T Y m(m)’[’zrm o2 *ﬁ”’] o Vo [mazﬂ ’ﬁ”’]

v
Vo (V\Il)]

LU Puov] il
=5 ['I' o8 o2 31] tn [V‘I'

The first term integrates to zero, using integration by parts twice, and the second term can be simplified to
VIS W VEE W Sy = IR S0





image20.png
de Broglie formula

_h_2mh
PES T




image21.png
0.0, >




image22.png
+Problem 1.14 A particle of mass m is in the state

Wx, 1) = Ae—a[(mx7/h)+il]’
where 4 and a are positive real constants.

(@) Find 4.

(b) For what potential energy function ¥ (x) does W satisfy the Schridinger equa-
tion?

(€) Calculate the expectation values of x, x2, p, and p?*.
(d) Find o, and o,,. Is their product consistent with the uncertainty principle?
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(a)

o 1 Th 2am\ /4
—olAl2 —2ama®/h g _ o| 4|2 2 _
1=2/4] A de =241 (Zam/h) =AY o |4 ( = ) :

(b)
oV ) v 2amx ad 2am v 2am 2ama?
I iy S v (‘1/+ a:) “Th (1’ k )'I'
Plug these into the Schrédinger equation, ih% g 612 +VU:

2 2
=i o (2 (4 2 g
R 7

2 -
= [ha — ha (1 - 2“:“ )] T =2 a?mz?T, so |V(z)=2ma?s>.





image24.png
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e [
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W(x, 1) = y(x) f()
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For separable solutions we have

v df P&y

WV e
(ordinary derivatives, now), and the Schrédinger equation (Equation 1.1) reads

R 42
- TV vy

Or, dividing through by ¥ f:

L 1df w1 dy
U T Tomy dx?
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W(x, 1) = P(x)e B/
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WG, ) = W = yret By e B0 = |y (x)?
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pl
H(x, p) = m +V(x).

The corresponding Hamiltonian operator, obtained by the canonical substitution p —
(h/i)(3/8x), is therefore*

A= + V¢
= w7V

Thus the time-independent Schrédinger equation (Equation 2.4) can be written

Ay = Ey,
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and the expectation value of the total energy is
(H) =/w*f110dx = E/w/yldx =E.

(Note that the normalization of W entails the normalization of ¥.) Moreover,
Py = A(Ay) = A(Ey) = E(AY) = By,

and hence
)= [y iy ax = [ wiax= g

So the standard deviation in A is given by

2

o} = (HY — (H)? E?
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But remember, if o = 0, then every member of the sample must share the same value
(the distribution has zero spread). Conclusion: A separable solution has the property
that every measurement of the total energy is certain to return the value E. (That’s

why I chose that letter for the separation constant.)
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3. The general solution is a linear combination of separable solutions. As
we're about to discover, the time-independent Schrodinger equation (Equation 2.4)
yields an infinite collection of solutions ((x), ¥2(x), ¥3(x), ...), each with its
associated value of the separation constant (£, E,, E3, ...); thus there is a different
wave function for each allowed energy:

Wi 1) = Y@ B W, 1) = Yo e R

Now (as you can easily check for yourself) the (time-dependent) Schrédinger equation
(Equation 1.1) has the property that any linear combination® of solutions is itself a
solution. Once we have found the separable solutions, then, we can immediately
construct a much more general solution, of the form

W, 1) =Y eyt (x)e ™ B, [2.14]
n=1
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(a) For normalizable solutions, the separation constant £ must be real. Hint: ‘Write
E (in Equation 2.6) as Eq + iI" (with £y and T real), and show that if Equation
1.20 is to hold for all ¢, T" must be zero.
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U(z,t) = ,p(z)e—x(Enhr):/h 'I)(I)en/h —iEot/h o2 = leczn/ﬁ

/ ¥ (2, t)[de = e2TH/" / [¥[2dz.

The second term is independent of ¢, so if the product is to be 1 for all time, the first term (¢27*/") must
also be constant, and hence ' =0. QED
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(b) ¥ can always be taken to be real (unlike W, which is necessarily complex).
Note: This doesn’t mean that every solution to the time-independent Schrodinger
equation is real; what it says is that if you’ve got one that is not, it can always be
expressed as a linear combination of solutions (with the same energy) that are.
So in Equation 2.14 you might as well stick to ¥ s that are real. Hint: If ¥ (x)
satisfies the time-independent Schrodinger equation for a given £, so too does
its complex conjugate, and hence also the real linear combinations (y + ¢*)

and i (¢ — ¢¥*).
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(b) If ¥ satisfies Eq. 2.5, —3= 5% + Vb = E), then (taking the complex conjugate and noting that V' and

E are real): —22 2% 4 Ve = By, so * also satisfies Eq. 2.5. Now, if ¢y and 1, satisfy Eq. 2.5, so
too does any linear combination of them (V3 = c1t)1 + catha):

2 8, (oo
e V= (a2 + e S Ve e
e 1
= [*a T *""l] te [*a P *""’2]

= ai(Edy) + e2(Bin) = Bty + eovy) = Eva.

Thus, (¢ + ¢*) and i(v — %*) ~ both of which are real - satisfy Eq. 2.5. Conclusion: From any complex
solution, we can always construct two real solutions (of course, if ¥ is already real, the second one will be
zero). Tn particular, since ¥ = 1[(t + ¥*) — i(i(t) — ¥*))], ¢ can be expressed as a linear combination of
two real solutions.  QED
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(c) If ¥ (x) is an even function [i.e., ¥ (—x) = ¥ (x)], then y(x) can always be
taken to be either even or odd. Hint: If yr(x) satisfies the time-independent
Schrédinger equation for a given E, so too does ¥ (—x), and hence also the
even and odd linear combinations ¥ (x) £ ¥ (—x).
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(c) If ¢ (x) satisfies Eq. 2.5, then, changing variables 2 — —x and noting that 0% /0(~z)* = 6% /022,

h2 0%(—
e PR |V cap(a) = By(2)
S0 if V(=) = V(z) then (~z) also satisfies Eq. 2.5. It follows that ., (z) = 1(x) + (=) (which i
even: 1y (~z) = 1+ (x)) and t_(z) = ¥(z) — Y(~) (which is odd: t_(~z) = —p. (x)) both satisfy Eq.
25, But 1(z) = 4 (124 () + 1 (2)), 50 amy solution can be expressed as a linear combination of even and
odd solutions.  QED
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«Problem 2.2 Show that £ must exceed the minimum value of ¥ (x) for every
normalizable solution to the time-independent Schrodinger equation. What is the
classical analog to this statement? Hint: Rewrite Equation 2.4 in the form

Ay 2m

Pl h—z[V(X) - ElY;
if E < Vi, then ¥ and its second derivative always have the same sign—argue that
such a function cannot be normalized.
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Given £% = 22[V(2) — EJth, if E < Viua, then ¢ and 1 always have the same sign: If ¢ is positive(negative),
then " s also positive(negative). This means that ¢ always curves away from the axis (see Figure). However,
it has got to go to zero as = — —oc (else it would not be normalizable). At some point it’s got to depart from
zero (if it doesn't, it’s going to be identically zero everyuhere), in (say) the positive direction. At this point its
slope is positive, and increasing, so t gets bigger and bigger as  increases. It can’t ever “turn over” and head
back toward the axis, because that would requuire a negative second derivative—it always has to bend away
from the axis. By the same token, if it starts out heading negative, it just runs more and more negative. In
neither case is there any way for it to come back to zero, as it must (at = — oo) in order to be normalizable.
QED

N
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Vi) = 0, if0<x<a
o0, otherwise
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Outside the well, ¥ (x) = 0 (the probability of finding the particle there is zero).
Inside the well, where V' = 0, the time-independent Schrédinger equation (Equation

2.4) reads .
n d*y
Tomde = EY
or s o E
d
—ll/ = —kzw, where k = "

dx?

[2.16)

[2.17]
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V{(x) = Asinkx + Bcoskx
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¥(0)=Y() =0
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¥(0) = Asin0+ BcosO = B
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Y(x) = Asinkx
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withn=1,2, 3,....
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1. They are alternately even and odd, with respect to the center of the well.
(1 is even, ¥, is odd, ¥ is even, and so on.®)

2. As you go up in energy, each successive state has one more node (zero
crossing). ¥ has none (the end points don’t count), ¥, has one, 13 has two, and so

on.




image55.png
Wi(x)

v (x)

Ys(x)

xY

xY

x Y




image56.png
3. They are mutually orthogonal, in the sense that

f‘!/m(x)*llf..(X)dx =0,

whenever m # n. Proof
fwm(x)*¢”(x)dx = azfoﬂ sm( )sm (% )
Lo () o (2 o))
=- cos x| —cos dx
aJy a

_{ 1 . (rn—n ) Lo (m+n
" —n)x s a = (m+n)7r

1 {sin[(m —m)x] _ sin[(m +m)7 ]

=z (m —n) (m +n)

X
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/ Ym ()" Y () dx = Spn
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where 8, (the so-called Kronecker delta) is defined in the usual way

5 = 0, ifm=#n;
™=, ifm=n.

We say that the y’s are orthonormal.
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4. They are complete, in the sense that any other function, f(x), can be ex-
pressed as a linear combination of them:

f@) = ;cnz/z,.(x) = \/g Ec,, sin (?x) [2.28]
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W, (x, 1) =,/ 2 sin (Ex) i/ mal
a a
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Problem 1.7 Attime ¢ = 0 a particle is represented by the wave function

Az/a, if0<z<a,
U(z,0)={ Ab-2)/(b—a), fa<z<h
0, otherwise,

where A, a, and b are constants

(@) Normalize W (that s, find A in terms of a and b).
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Problem 2.5 Calculate (x), (x2), {p), (p*). 0%, and 6,,, for the nth stationary state
of the infinite square well. Check that the uncertainty principle is satisfied. Which
state comes closest to the uncertainty limit?
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Problem 2.6 A particle in the infinite square well has as its initial wave function
an even mixture of the first two stationary states:

(@)

(b)

©

W(x,0) = A[Y1(x) + ¥2(x)].

Normalize W(x,0). (That is, find 4. This is very easy if you exploit the
orthonormality of ¥, and . Recall that, having normalized W at f = 0, you
can rest assured that it stays normalized—if you doubt this, check it explicitly
after doing part b.)

Find W(x, ) and |W (x, 1)|%. (Express the latter in terms of sinusoidal functions
of time, eliminating the exponentials with the help of Euler’s formula: ¢/ =
cosf +isinf.) Let w = n2h/2ma®.

Compute (x). Notice that it oscillates in time. What is the frequency of the

oscillation? What is the amplitude of the oscillation? (If your amplitude is
greater than a/2, go directly to jail.)
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(d) Compute (p). (As Peter Lorre would say, “Do it ze kveek vay, Johnny!”)
(e) Find the expectation value of /. How does it compare with £, and E,?

(f) A classical particle in this well would bounce back and forth between the walls.
If its energy is equal to the expectation value you found in (e), what is the
frequency of the classical motion? How does it compare with the quantum
frequency you found in (c)?
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(@)

(b)

[W[? = W20 = [AP(] +93) (%1 + vh2) = |AP[T ¢ + $idb2 + Vb + U3eda].

L= [ 107 = AP [ + b1+ b3+ [Pl = 24P = [A= 1V

E,

1
U(x,t) = 7 [11)1{’5"/" +¢ze”E2'/"] (but, T" =n’w)
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(€)
(z)= / 2| W(x, 1) Pdr
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Problem 2.7 Although the overall phase constant of the wave function is of no
physical significance (it cancels out whenever you calculate a measureable quantity),
the relative phase of the expansion coefficients in Equation 2.14 does matter. For
example, suppose we change the relative phase of ¥ and v, in Problem 2.6:

W(x,0) = A1 (x) + €92 (0)],

where ¢ is some constant. Find W (x, 1), | ¥ (x, £)|2, and (x), and compare your results
with what you got before. Study the special cases ¢ = /2 and ¢ = 7.
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i [sin (Za) + sin (£a) e~ *te?];

[¥(z,0)*

Z2) +sin? (Zz) + 2sin (Z2) sin (Zz) cos(3t — 9)];

and hence

2 [1 — 2 cos(3wt — ¢)].| This amounts physically to starting the clock at a different time
(ice., shifting the 7 = 0 pomnt).

o= g 50 W(z,0) = Al () + ivia(2)], then cos(3wt — @) = sin(3wt); (z) starts at g

1f ¢ =, s0 ¥(2,0) = At (2) — ta(z)], then cos(3wt — 6) = —cos(3wt); (z) starts at 5 (1 + 93:’2)
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+«Problem 1.8 Consider the wave function
W(z, 1) = AeMHlg=it

where A, X, and w are positive real constants. [We’ll see in Chapter 2 what potential
(V) actually produces such a wave function.]

(@) Normalize ¥.
(b) Determine the expectation values of x and 22.

(c) Find the standard deviation of z. Skelch the graph of |¥|2, as a function of z,
and mark the points ((z) + o) and ((z) — o) to illustrate the sense in which o
represents the “spread” in z. What is the probability that the particle would be
found outside this range?
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Problem 2.3 Show that there is no acceptable solution to the (time-independent)
Schrédinger equation (for the infinite square well) with £ = O or £ < 0. (Thisis a
special case of the general theorem in Problem 2.2, but this time do it by explicitly
solving the Schrodinger equation and showing that you cannot meet the boundary
conditions.)




image75.png
Equation 220 says % = 282 Eq. 2.23 says $(0) = ¢(a) = 0. If E = 0, d*/dz* =0, so ¥(z) = A + Bz:
Y(0)=A=0= =B b(a)=Ba=0=B=0,s0¢=0I{E <0, d*/d? = 6%, with &
real, so 9(z) = Ae™* + Be*=. This time $(0) = A+ B =0 = B = —A, s0
¥(a) = A (e — ¢%) = 0 = cither A =0, 50 % = 0, or else " = ¢, s0 ¢ = 1, 50 2 = In(1) = 0,
so =0, and again v = 0. In all cases, then, the boundary conditions force % = 0, which is unacceptable
(non-normalizable).
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with

k> 0= traveling to the right,
k < 0= traveling to the left.
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‘The speed of these waves (the coetficient of 7 over the coetficient of x) 18

nk[E
Uganam = 2 =\ [2.80]

On the other hand, the classical speed of a free particle with energy E is given by
E= (1/2)mv2 (pure kinetic, since V' = 0), so

2E
Velassical = 1/ = 2Vquantum- [2.81]
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*Problem 2.22 A free particle has the initial wave function ~ (a)

W(x,0) = de

where 4 and a are constants (a is real and positive)

(a) Normalize ¥ (x,0)
(b) Find W(x,1). Hinr: Integrals of the form

[ oa

can be handled by “completing the square.” Let y = /alx +(b/2a)], and note
that (ax? + bx) = y* — (b*/4a). Answer:

a1+

)

s
veen= (7) VT i my

(€) Find |W(x,1)]’. Express your answer in terms of the quantity w
ind_|W(x, O _Express your : quantity
a/[1 + (2hat/m)?). Sketch W[ (as a function of x) at ¢ = 0, and again

for some very large . Qualitatively, what happens to [W/|? as time goes on?

(d) Find (x), (p), (x?), (p?), 0, and 0. Partial answer: (p?) = ah®, but it may
take some algebra to reduce it to this simple form.

(€) Does the uncertainty principle hold? At what time ¢ does the system come
closest to the uncertainty limit?
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Write ¥ = Be %", where B

2a
T+62

% 1 2 e
/Wm:‘/;w. So T = -2

(p?) = Qw‘/zu[:u — 2ba?)e 2" 4y
,wﬁ/’ (‘/; 2”? 2—2,) = 2bh? (17 ﬁ) .

b a (1), (-i#®) _14# _a
But 1’2‘,;2’1’(1“5)( %a )’1’ 3 3%
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1 2ba?)e 20

=2u?.




image87.png
()

20y =

Closest at

hf " +602=

i

0,

T+ (2ha t/m)’zg./

at which time it is right af the uncertainty limit




image88.png
abound state

Classical tuming points”
@

Vi

! x x
Classicalturning point
()  scattering states

classically bound state
Classical tuming POINS  qantum scattering state

(c)




image89.png
E < V(~00) and ¥ (+00) = bound state, 1291]
E > V(=00)or V(+00) = scattering state.

In “real life” most potentials go to zero at infinity, in which case the criterion simplifies
even further:

{ E <0 = bound state, o

E>0 = scattering state.
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The Dirac delta function, 8(x), is defined informally as follows:

: .
E(x):[ ?,;;, ::i:g . with /W s@ydx=1.
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8(x)

Figure 2.8: The Dirac delta function
(Equation 2.93).

be a spike of area 1 at the point a. If you multiply §(x — a) by an ordinary function
f(x), it’s the same as multiplying by f(a):

f)8(x —a) = f(a)d(x —a), 2.94]

because the product is zero anyway except at the point a. In particular,

+00

00
F8Cx — a)dx =f(a)/ S(x—a)ydx = fa).  [2.95]
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Problem 2.23 Evaluate the following integrals

@ [4 (3 =32% + 20 = D3(x +2)dx
(b) [7"[cos(3x) +2)8(x —7)dx
(© [ exp(lx] +3)8(x — 2)dx.
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(a)
(<2 —3(=2)2 +2(-2) — 1= -8 12— 4— 1 =[295]
(b)
cos(3m) +2=-1+2=

(©)

[0] (x = 2 is outside the domain of integration).




